Filtre passe-bas d'ordre 1 ¶ Important Fondamental: Forme canonique Un filtre passe bas d'ordre 1 peut se mettre sous la forme: \[\begin{align*} \underline{H} = \frac{H_0}{1 + j x} \end{align*}\] avec la pulsation réduite \(x = \frac{\omega}{\omega_0}\) et la pulsation propre \(\omega_0\). Caractéristiques Les caractéristiques que vous devez savoir calculer/prouver sont: ses limites haute et basse fréquence qui permettent de reconnaître un tel filtre: la limite HF est nulle et la limite BF est non nulle. l'expression de son gain réel, de son gain en décibel et de sa phase le gain réel est strictement décroissant. SI \(H_0 > 0\): La phase passe de 0 à \(-\pi / 2\) et elle vaut \(-\pi/4\) à la pulsation propre. La pulsation de coupure est égale à la pulsation propre. Le diagramme de Bode admet une asymptote horizontale à basse fréquence et une asymptote oblique de pente \(-20 dB/decade\) à haute fréquence. Diagramme de Bode On retrouve les caractéristiques précédentes sur le diagramme de Bode.

Filtre Passe Bas D Ordre 2.1

Filtre passe-bande d'ordre 2 ¶ Un filtre passe bande d'ordre 2 peut se mettre sous la forme: \underline{H}& = \frac{H_2}{1 + jQ \left(x - \frac{1}{x}\right)}\\ & = \frac{j H_2 \frac{x}{Q}}{1 - x^2 + j \frac{x}{Q}} ses limites haute et basse fréquence qui permettent de reconnaître un tel filtre: la limite HF est nulle et la limite BF est nulle. l'existence d'une résonance quelque soit la valeur du facteur de qualité. La fréquence de résonance est toujours la pulsation propre. La bande passante possède une largeur \(\Delta \omega = \frac{\omega_0}{Q}\). Les pulsations de coupure sont symétriques sur un diagramme de Bode: \(\omega_{c1} \times \omega_{c2} = \omega_0^2\). Si \(H_2 > 0\): La phase passe de \(\pi / 2\) à \(-\pi/2\) et elle vaut 0 à la pulsation propre, on dit que les signaux entrée et sortie sont en phase. Le diagramme de Bode admet une asymptote oblique à basse fréquence de pente \(20 \rm{dB/decade}\) et une asymptote oblique de pente \(-20 dB/decade\) à haute fréquence. On retrouve les caractéristiques précédentes sur le diagramme de Bode.

Filtre Passe Bas D Ordre 2.2

Elle tend vers 0 quand Q décroit et vers la pulsation propre quand Q augmente. La phase passe de 0 à \(-\pi\) (ou de \(\pi\) à 0 si \(H_0 < 0\)). Elle vaut \(-\pi/2\) (ou \(\pi/2\)) à la pulsation propre. Le diagramme de Bode admet une asymptote horizontale à basse fréquence et une asymptote oblique de pente \(-40 dB/decade\) à haute fréquence. On retrouve les caractéristiques précédentes sur le diagramme de Bode. Plusieurs tracés sont représentés pour différentes valeurs de Q. Filtre passe-haut d'ordre 2 ¶ Un filtre passe haut d'ordre 2 peut se mettre sous la forme: \underline{H} = \frac{- H_1 x^2}{1 - x^2 + j \frac{x}{Q}} l'existence d'une résonance conditionnée à un facteur de qualité tel que \(Q > \frac{1}{\sqrt{2}}\). Elle tend vers l'infini quand Q décroit et vers la pulsation propre quand Q augmente. La phase passe de \(\pi\) à 0 (ou de 0 à \(-\pi\) si \(H_1 < 0\)). Elle vaut \(\pi/2\) (ou \(- \pi/2\)) à la pulsation propre. Le diagramme de Bode admet une asymptote horizontale à haute fréquence et une asymptote oblique de pente \(40 dB/decade\) à basse fréquence.

Filtre Passe Bas D'ordre 2

Le gain d'un filtre de Butterworth passe-bas d'ordre n est: où est le gain du filtre, sa fonction de transfert, l' unité imaginaire: (les électroniciens utilisent la lettre j au lieu de i pour ne pas confondre avec i de l' intensité) la fréquence angulaire (ou pulsation) du signal en radians par seconde ( rad. s -1) () et la fréquence de coupure (angulaire) du filtre (à -3 dB). En normalisant l'expression (c'est-à-dire en spécifiant): Les 2n-1 premières dérivées de sont nulles pour, impliquant une constance maximale du gain dans la bande passante. Aux hautes fréquences: Le roll-off du filtre (la pente du gain dans un diagramme de Bode) est de -20n dB/décade, où 'n' est l'ordre du filtre. Le gain ne représente que le module de la fonction de transfert H(p) (au sens de la transformée de Laplace), ce qui laisse une certaine latitude pour déterminer cette dernière. On doit avoir Les pôles de cette expression sont équirépartis sur un cercle de rayon ω c. Pour que le filtre soit stable, on choisit les pôles de la fonction de transfert comme ceux de H(p)H(-p) ayant une partie réelle négative.

Il est actuellement 11h45.