Expérience aléatoire - événement On appelle expérience aléatoire toute expérience qui, renouvelée dans les mêmes conditions, ne donne pas à chaque essai les même résultats. Les résultats possibles de cette expérience aléatoire sont appelées les issues. L'ensemble des issues est appelé univers de l'expérience aléatoire. Dans toute la suite, on se placera toujours dans le cas où $\Omega$ est fini. Toute partie de $\Omega$ est appelé événement. L'événement $\varnothing$ est appelé l' événement impossible et $\Omega$ est appelé l' événement certain. Un événement comprenant un seul élément s'appelle événément élémentaire. Cours probabilité cap 4. Si $A$ et $B$ sont deux événements, l'événement "$A$ ou $B$" est $A\cup B$. $A\cup B$ correspond donc à "$A$ est réalisé ou $B$ est réalisé". l'événement "$A$ et $B$" est $A\cap B$. $A\cap B$ correspond donc à "$A$ est réalisé et $B$ est réalisé". l' événement contraire de $A$ est le complémentaire de $A$ dans $\Omega$, noté $\bar A$. $A$ et $B$ sont dits incompatibles si $A\cap B=\varnothing$.

Cours Probabilité Cap 4

On appelle système complet d'événements de $\Omega$ toute famille finie d'événements $A_1, \dots, A_n$ vérifiant: les événements sont deux à deux incompatibles: $$\forall i, j\in\{1, \dots, n\}^2, \ i\neq j, \ A_i\cap A_j=\varnothing;$$ leur réunion est $\Omega$: $\bigcup_{i=1}^n A_i=\Omega$. Cours probabilité cap saint. Espace probabilisé fini On appelle probabilité sur l'univers $\Omega$ toute application $P:\mathcal P(\Omega)\to [0, 1]$ vérifiant $P(\Omega)=1$ et pour tout couple de parties disjointes $A$ et $B$ de $\Omega$, $P(A\cup B)=P(A)+P(B)$. Le couple $(\Omega, P)$ s'appelle alors un espace probabilisé fini. Propriétés des probabilités: $P(\varnothing)=0$; Pour tout $A\in\mathcal P(\Omega)$, $P(\bar A)=1-P(A)$; Pour tous $A, B\in\mathcal P(\Omega)$, $A\subset B\implies P(A)\leq P(B)$; Pour tous $A, B\in\mathcal P(\Omega)$, $P(A\cup B)=P(A)+P(B)-P(A\cap B)$; Pour toute famille $A_1, \dots, A_p$ d'événements deux à deux incompatibles, $$P(A_1\cup\dots\cup A_p)=P(A_1)+\dots+P(A_p). $$ Pour tout système complet d'événements $A_1, \dots, A_p$, $$P(A_1\cup\dots\cup A_p)=1.

p\left(A \cap B\right)=p\left(A\right)\times p\left(B\right). Propriété A A et B B sont indépendants si et seulement si: p A ( B) = p ( B). p_{A}\left(B\right)=p\left(B\right). Démonstration Elle résulte directement du fait que pour deux événements quelconques: p ( A ∩ B) = p ( A) × p A ( B). p\left(A \cap B\right)=p\left(A\right)\times p_{A}\left(B\right). Comme A ∩ B = B ∩ A A \cap B=B \cap A, A A et B B sont interchangeables dans cette formule et on a également: A A et B B sont indépendants ⇔ \Leftrightarrow p B ( A) = p ( A) p_{B}\left(A\right)=p\left(A\right). 5. Résumé de cours : Probabilités sur un univers fini. Formule des probabilités totales A 1 A_{1}, A 2 A_{2},..., A n A_{n} forment une partition de Ω \Omega si et seulement si A 1 ∪ A 2... ∪ A n = Ω A_{1} \cup A_{2}... \cup A_{n}=\Omega et A i ∩ A j = ∅ A_{i} \cap A_{j}=\varnothing pour i ≠ j i\neq j. Cas particulier fréquent Pour toute partie A ⊂ Ω A\subset\Omega, A A et A ‾ \overline{A} forment une partition de Ω \Omega. Propriété (Formule des probabilités totales) Si A 1 A_{1}, A 2 A_{2},...