Représenter cette expérience par un arbre pondéré. Soit X la variable aléatoire égale au nombre de boules rouges obtenues. Déterminer la loi de probabilité de X. Exercice 02: Une urne contient trois boules, indiscernables au… Variable aléatoire – Première – Exercices corrigés Exercices à imprimer pour la première S – Variable aléatoire – Probabilité Exercice 01: Lors d'une animation dans un magasin, on distribue 500 enveloppes contenant des bons d'achat. Une enveloppe contient un bon d'achat de 100 euros, neuf enveloppes contiennent un bon d'achat de 50 euros, vingt enveloppes contiennent un bon d'achat de 20 euros, les autres enveloppes contiennent un bon d'achat de 10 euros. Une personne reçoit une enveloppe. Soit X la variable aléatoire égale à la valeur… Echantillonnage – Première – Cours Cours de 1ère S sur l'échantillonnage Intervalle de fluctuation d'une fréquence On étudie un caractère sur une population; à partir d'études statistiques, on émet l'hypothèse que la proportion de personnes présentant ce caractère dans la population est p. On cherche à valider ou non cette hypothèse sur un échantillon de n individus, constitué par tirage au sort avec remise; on calcule la fréquence f d'individus présentant ce caractère.

Cours De Probabilité Première Pc

On dit que ces expériences sont indépendantes. Les issues d'une répétition sont des listes de résultats. L'arbre pondéré: il permet de modéliser la répétition d'expériences identiques… Variable aléatoire – Première – Cours Cours de 1ère S sur la variable aléatoire Définitions Soit E un ensemble sur lequel est définie une loi de probabilité. Lorsqu'on associe à chaque issue de E un nombre réel, on dit que l'on définit une variable aléatoire X sur l'ensemble E. L'ensemble de ces réels, noté E', est l'ensemble des valeurs prises par X. Loi de probabilité d'une variable aléatoire La variable aléatoire X permet de transporter dans E' la loi de probabilité définie sur E. Soit, les…

Cours De Probabilité Première Francais

Echantillonnage – Première – Exercices corrigés Exercices à imprimer pour la première S sur l' échantillonnage – Probabilité Exercice 01: Devoir de mathématiques 1. Un professeur de mathématiques a calculé que la proportion d'élèves ayant la moyenne à un devoir passé en début d'année dans la classe de 1er S est de 46%. Sa classe de 1er S compte 35 élèves. a. En utilisant: – le plus petit a tel que P(X ≤ a) > 0. 025 est a = 10, – le plus… Modélisation d'une expérience aléatoire – Première – Exercices corrigés Exercices à imprimer pour la première S – Modélisation d'une expérience aléatoire – Probabilité Exercice 01: Le tableau suivant donne la répartition d'une classe 1reS de 30 élèves. On dispose de la liste alphabétique de ces élèves, chacun d'eux étant repéré par un nombre de 1 à 30. Pour interroger un élève au hasard, le professeur de mathématiques un chapeau dans lequel il a placé 30 jetons portant les numéros de 1 à suppose ces jetons indiscernables au… Répétition d'expériences identiques et indépendantes – Première – Exercices Exercices corrigés à imprimer pour la première S – probabilité Répétition d'expériences identiques et indépendantes Exercice 01: Une urne contient 6 boules blanches, 3 boules noires et 1 boule rouge, indiscernables au toucher On tire successivement, et avec remise, deux boules de l'urne.

Cours De Probabilité Première Partie

© 2015 1Cours | Cours en ligne TOUS DROITS RÉSERVÉS.

Exemple 1 Donner l'ensemble de définition de la fonction f: x ↦ x + 2 x − 3 f: x \mapsto \frac{x+2}{x - 3} f f est définie si et seulement si le dénominateur est différent de 0. ( Attention: le numérateur, lui, peut très bien être nul, cela ne pose pas de problème! ) Or x − 3 ≠ 0 x - 3 \neq 0 si et seulement si x ≠ 3 x\neq 3 Donc f f est définie pour toutes les valeurs de x x différentes de 3. On écrit D f = R \ { 3} D_{f} = \mathbb{R}\backslash\left\{3\right\} ou encore D f =] − ∞; 3 [ ∪] 3; + ∞ [ D_{f}=\left] - \infty; 3\right[ \cup \left]3; +\infty \right[ Exemple 2 Donner l'ensemble de définition de la fonction f: x ↦ x − 1 f: x \mapsto \sqrt{x - 1} f f est définie si et seulement si l'expression située sous le radical est positive ou nulle. C'est à dire, ici, si et seulement si x − 1 ⩾ 0 x - 1\geqslant 0 donc x ⩾ 1 x\geqslant 1. L'ensemble de définition est donc D f = [ 1; + ∞ [ D_{f}=\left[1; +\infty \right[ L'intervalle est fermé en 1 1 car x x peut prendre la valeur 1 1. Exemple 3 Donner l'ensemble de définition de la fonction f: x ↦ x + 3 3 x − 2 f: x \mapsto \frac{x+3}{\sqrt{3x - 2}} On est ici dans le troisième cas avec un radical au dénominateur.