Notions fondamentales: maintien des formes aptes à se reproduire, hasard/aléatoire, sélection naturelle, effectifs, fréquence allélique, variation, population, ressources limitées. Vidéo d'introduction: les mécanismes d'évolution TP: Modélisation de la dérive génétique et de la sélection naturelle A/ Diversification d'une population au cours du temps Une population est un ensemble d'individus d'une même espèce mais ne possédant pas les mêmes caractères, c'est à dire les mêmes combinaisons d'allèles pour leurs gènes. Au sein d'une population il existe donc une diversité génétique correspondant à la fréquence de ces caractères et de ces allèles. Modelisation de la derive genetique di. Dans les populations, les fréquences des caractères et des allèles évoluent de génération en génération selon 2 mécanismes: a) La sélection naturelle – livre p74-75 A un instant donné, les individus d'une population ont une survie et une fertilité différentes selon les conditions du milieu (accès aux ressources alimentaires, compétition avec d'autres espèces, etc…).

Modelisation De La Derive Genetique Di

C'est le hasard qui a fait qu'un pionnier porteur de l'allèle malade se trouva dans la population fondatrice. Dans le cas de la dystrophie myotonique, l'écart du nombre de cas est dû à une fréquence supérieure à la normale de l'allèle de la maladie au sein d'une très petite population colonisatrice ayant quitté la Vendée et la Charente-Maritime, en France pour s'établir au Québec [ 3]. Modelisation de la derive genetique avec. Lorsqu'un nombre réduit d'individus se sépare d'une population plus vaste, pour aller coloniser une île ou un nouveau milieu, ces individus ne vont « emporter » qu'un échantillon d'allèles du pool d'allèles de la population mère, et ce, de manière que l'on suppose aléatoire. La nouvelle population peut donc présenter des fréquences génotypiques fort différentes de la population initiale. Cet écart peut changer radicalement le profil (allélique, génotypique et phénotypique) de la population fondatrice, par rapport à la population initiale. Un autre exemple concerne une petite colonie britannique de 15 personnes de Tristan da Cunha, un archipel au milieu de l'Atlantique.

Modelisation De La Derive Genetique Les

Comment modéliser mathématiquement l'influence de la sélection naturelle et de la dérive génétique sur la fréquence des allèles d'une population? Influence de la sélection naturelle sur la fréquence d'un allèle codant la pigmentation d'un papillon: la Phalène du Bouleau. Au milieu du XIX e siècle, la variété claire de la phalène du bouleau, dite typica, est très largement majoritaire en Angleterre. Cette forme se camoufle particulièrement bien sur les troncs clairs de bouleaux, ou sur les surfaces couvertes de lichen, leur permettant d'échapper à leurs prédateurs. Une phalène typica posée sur un tronc de bouleau En 1848, on capture pour la première fois une phalène de couleur sombre, dite carbonaria Phalènes carbonaria et typica posées sur un tronc sombre Les scientifiques constatent que cette couleur foncée est due à une mutation dominante. Espace SVT - spé SVT. Vingt ans plus tard, alors que la pollution industrielle croissante provoque un noircissement des troncs et la disparition des lichens, la fréquence q de l'allèle muté monte à 3% dans la population de phalènes.

Modelisation De La Derive Genetique Avec

De plus, certains individus n'ont pas de descendance du tout. Le nombre des allèles (la variabilité génétique) se réduit donc. Parmi les allèles « survivants », certains vont voir leur fréquence originelle diminuer ou au contraire augmenter. C'est pour cette raison que le principe de Hardy-Weinberg, repose, entre autres, sur l'hypothèse d'une taille infinie de population. Dans une population de taille infinie, les fréquences génotypiques observées seront égales à leur espérance, puisque l'écart potentiel des tirages aux fréquences alléliques (variance), est d'autant plus grand que la population est petite (par exemple à la suite d'une forte mortalité ou lors de la fondation d'une nouvelle population) [ 1]. Modelisation de la derive genetique les. Du point de vue d'un gène, la dérive génétique conduit à l'augmentation ou à la diminution de la fréquence dans la population, de l'une de ses versions (= allèle). Deux exemples concrets sont un effet de fondation et une diminution de la diversité génétique. Effet fondateur [ modifier | modifier le code] Illustration de l'effet fondateur: les populations pionnières ne sont pas le reflet exact de la population de départ.

Animation servant de modélisation de la dérive génétique par tirages successifs avec remise. Interaction: oui Source: Philippe Cosentino Pour en savoir +: Voir en ligne:...

La dérive génétique est l' évolution d'une population ou d'une espèce causée par des événements aléatoires, impossibles à prévoir. Du point de vue génétique, c'est la modification de la fréquence d'un allèle, ou d'un génotype, au sein d'une population, indépendamment des mutations, de la sélection naturelle et des migrations. La dérive génétique est causée par des événements aléatoires et imprévisibles, comme le hasard des rencontres des spermatozoïdes et des ovules, dans le cas d'une reproduction sexuée. Les forces évolutives – SVT au lycée. La théorie de la dérive génétique a été établie par Motoo Kimura en 1968. Les effets de la dérive génétique sont d'autant plus importants que la population est petite, car les écarts observés par rapport aux fréquences alléliques y seront d'autant plus perceptibles. Cette situation peut se produire au moment de l'apparition d'une espèce, ou après un goulot d'étranglement (quand une grande partie d'une espèce a disparu, à la suite de phénomènes épidémiques ou d'une crise climatique ou d'une catastrophe par exemple).