Inscription / Connexion Nouveau Sujet Posté par Yosh2 11-05-21 à 13:04 bonjour soit f et g continue sur [a, b] tq pour tout t de [a, b], f(t) <= g(t) alors f(t)dt <= g(t)dt, cette propriete est elle aussi vrai pour une inegalite stricte, ou bien comme pour le passage a la limite les inegalites strictes deviennent larges? merci Posté par Aalex00 re: croissance de l'integrale 11-05-21 à 13:21 Bonjour, Pour f

  1. Croissance de l intégrale de
  2. Croissance de l intégrale de l'article

Croissance De L Intégrale De

Introduction Il existe plusieurs procédés pour définir l'intégrale d'une fonction réelle f continue sur un segment [ a, b] de R. Si la fonction est positive, cette intégrale, notée ∫ a b f ( t) d t, représente l'aire du domaine délimité au dessus de l'axe des abscisses et en dessous de la courbe, entre les deux axes verticaux d'équation x = a et x = b dans le plan muni d'un repère orthonormé. Dans le cas général, l'intégrale mesure l' aire algébrique du domaine délimité par la courbe et l'axe des abscisses, c'est-à-dire que les composantes situées sous l'axe des abscisses sont comptées négativement. Par convention, on note aussi ∫ b a f ( t) d t = − ∫ a b f ( t) d t. L' intégrale de Riemann traduit analytiquement cette définition géométrique, qui aboutit aux propriétés fondamentales suivantes. Cohérence avec les aires de rectangles Pour toute fonction constante de valeur c ∈ R sur un intervalle I de R, pour tout ( a, b) ∈ I 2, on a ∫ a b c d t = c × ( b − a). Positivité Soit f une fonction continue et positive sur un segment [ a, b].

Croissance De L Intégrale De L'article

La fonction F × g est une primitive de la fonction continue f × g + F × g ′ donc on trouve [ F ( t) g ( t)] a b = ∫ a b ( F ( t) g ′( t) + f ( t) g ( t)) d t = ∫ a b F ( t) g ′( t)d t + ∫ a b f ( t) g ( t) d t. Changement de variable Soit φ une fonction de classe C 1 sur un segment [ a, b] à valeur dans un intervalle J. Soit f une fonction continue sur J. Alors on a ∫ φ ( a) φ ( b) f ( t) d t = ∫ a b f ( φ ( u)) φ ′( u) d u Notons F une primitive de la fonction f. Alors pour tout x ∈ [ a, b] on a φ ( x) ∈ J et ∫ φ ( a) φ ( x) f ( t) d t = F ( φ ( x)) − F ( φ ( a)). Donc la fonction x ↦ ∫ φ ( a) φ ( x) f ( t) d t est une primitive de la fonction x ↦ φ ′( x) × f ( φ ( x)) et elle s'annule en a. Par conséquent, pour tout x ∈ [ a, b] on a = ∫ a x f ( φ ( u)) φ ′( u) d u. Le changement de variable s'utilise en général en sur une intégrale de la forme ∫ a b f ( t) d t en posant t = φ ( u) où φ est une fonction de classe C 1 sur un intervalle I et par laquelle les réels a et b admettent des antécédents.

31/03/2005, 18h27 #1 Deepack33 Croissance d'une suite d'intégrales ------ bonjour, je souhaiterais montrer que la suite In est croissante In= integral(x²e^(-x)) borne [0; n] je part donc du principe que si In est croissante alors In+1 - In supérieur a 0 dois je développer In+1 et In et ensuite montrer l'inégalité?? merci ----- 31/03/2005, 18h35 #2 matthias Re: Porblème croissance intérgale L'intégrale de n à n+1 d'une fonction positive étant positive.... pas vraiment besoin de calcul d'intégrales. 31/03/2005, 18h47 #3 bien vu merci bcp Discussions similaires Réponses: 2 Dernier message: 18/04/2007, 11h07 Réponses: 6 Dernier message: 26/01/2006, 07h47 Réponses: 8 Dernier message: 26/12/2005, 11h08 Réponses: 0 Dernier message: 25/10/2004, 18h14 Réponses: 3 Dernier message: 20/10/2004, 21h16 Fuseau horaire GMT +1. Il est actuellement 14h57.