Apprendre les mathématiques > Cours & exercices de mathématiques > test de maths n°124463: Somme et produit des racines Soit le polynôme du second degré P(x)= ax²+bx +c où a est différent de 0 et a, b, c sont des réels SI P admet deux racines distinctes x1 et x2 alors - Somme des racines de P: x1+x2= -b/a - Produit des racines de P: x1*x2= c/a Théorème Soient s et p 2 réels. Il existe 2 réels u et v tels que u+v=s et uv=p si et seulement si s²-4p≥0 Dans ce cas, u et v sont les solutions de l'équation x²-sx+p=0 Rappel: pour résoudre l'équation ax²+bx+c=0 on forme le discriminant =b²-4ac Si >0 l'équation admet 2 solutions réelles Si =0 l'équation admet 1 solution réelle Si <0 l'équation n'admet pas de solution réelle Intermédiaire Tweeter Partager Exercice de maths (mathématiques) "Somme et produit des racines" créé par papjo30 avec le générateur de tests - créez votre propre test! [ Plus de cours et d'exercices de papjo30] Voir les statistiques de réussite de ce test de maths (mathématiques) Merci de vous connecter à votre compte pour sauvegarder votre résultat.

Produit Des Racines De L'unité

supprimerait-on le x^2 et le x parce que comme P(1) = 0 et que le produit d'un nombre par zéro équivaut à zéro, cela revient a les enlever de l'équation tout simplement?? ) soit c = - 8 (là je veux bien, mais l'étape avant me laisse toujours perplexe) La seconde racine x2 vérifie donc 1 * x2 = (- 8/2) soit x2 = -4 (donc la racine de P multipliée par x2 vaut c/a soit -8/2 donc x2 vaut (-8/2)/1 c'est bien ça? ) - Edité par Kookee 20 janvier 2016 à 14:19:56 20 janvier 2016 à 17:30:31 Le premier point est juste une propriété car elle découle du fait que \(x_1 = \frac{-b-\sqrt{b^2 - 4ac}}{2a}\) et \(x_2 = \frac{-b+\sqrt{b^2 - 4ac}}{2a}\). Alors la somme et le produit des racines est trivial. Le second point est la réciproque. On part de \(S = -\frac{b}{a}\) et \(P = \frac{c}{a}\) et on inverse le système pour trouver a, b et c en fonction de S et P. Quant à ton exercice, la consigne dit qu'il faut que P admette la racine 1. Donc en effet, il suffit d'écrire P(1) = 0. Si tu ne sais pas que "a" racine de P implique P(a) = 0, regarde ton cours à nouveau.

Produit Des Racines N-Ièmes De L'unité

Découvrez Maxicours Comment as-tu trouvé ce cours? Évalue ce cours! Note 3 / 5. Nombre de vote(s): 2

2. Calcul des racines d'un trinôme du second degré connaissant leur somme et leur produit Théorème 5. Soient $x$ et $y$ deux nombres réels dont la somme est égale à $S$ et le produit égal à $P$. Alors $x$ et $y$ sont les deux solutions de l'équation du second degré où $X$ désigne l'inconnue: $$X^2-SX+P=0$$ Démonstration du théorème 5. Soient $x$ et $y\in\R$ tels que: $S=x+y$ et $P=xy$. Déterminer $x$ et $y$ revient à résoudre le système de deux équations à deux inconnues $x$ et $y$ $$\left\{\begin{align} x+y&= S\\ xy&=P\\ \end{align}\right. $$ Remarque importante Tout d'abord, $x$ et $y$ jouent des « rôles symétriques » dans ce système. C'est-à-dire, si on change $x$ en $y$ et $y$ en $x$, on obtient encore une solution du système. Autrement dit: Le couple $(x;y)$ est solution du système si, et seulement si, le couple $(y;x)$ est solution du système. Donc, si $x\neq y$, nous obtiendrons au moins deux couples solutions du système. Revenons à la démonstration du théorème 5. $x$ et $y$ sont solution du système si et seulement si: $$\left\{ \begin{align} &x+y= S\\ &xy=P\\ \end{align}\right.