17€ pour 4 – 1. 37€ pour 5 – 1. 57€ pour 6 – 1. 67€ pour 7 – 1. 77€ pour 8 – 1. 87€ pour 9 et 1. 97€ pour 10 et +. Mots-clés de l'exercice: exercice, fonction affine, droite. Exercice précédent: Dérivation – Fonctions, toboggan, coordonnées et pentes – Première Ecris le premier commentaire

Exercice Fonction Affine Seconde Générale

La fonction g g définie par: g ( x) = − 4 x g(x) = -4x est une fonction linéaire, donc affine ( a = − 4 a = -4 et b = 0 b = 0). 2. Représentation graphique. La représentation graphique d'une fonction affine dans un repère est une droite. Il suffit donc de construire deux points pour la tracer. La représentation graphique d'une fonction linéaire passe par l'origine du repère. La représentation graphique d'une fonction constante est une droite parallèle à l'axe des abscisses. Exercice fonction affine seconde des. Représenter graphiquement les fonctions f f, g g et h h défines sur R \mathbb{R} par: f ( x) = x − 2 f(x) = x - 2 g ( x) = − 2 x + 1 g(x) = -2x + 1 h ( x) = 3 h(x) = 3 Pour la fonction f f: Point x x f ( x) f(x) A A 0 0 0 − 2 = − 2 0- 2 =-2 B B 3 3 3 − 2 = 1 3 - 2 = 1 Pour la fonction g g: g ( x) g(x) C C 0 1 D D 2 -3 II. Sens de variation Propriété n°1: Le sens de variation d'une fonction affine définie par: f ( x) = a x + b f(x) = ax + b dépend du signe de a a. On a: Si a > 0 a > 0, la fonction f f est croissante sur R \mathbb{R}.

Exercice Fonction Affine Seconde Des

6 KB Chap 07 - Ex 4 - Fonctions affines (accroissement linéaire) Chap 06 - Ex 4 - Fonctions affines (accr 449. 4 KB Chap 07 - Ex 5 - Problèmes sur les fonctions affines - CORRIGE Chap 06 - Ex 5 - Problèmes sur les fonct 298. 8 KB Chap 07 - Ex 6A - Fiche Fonctions affines par morceaux - CORRIGE Chap 06 - Ex 6A - Fiche Fonctions affine 322. Exercice, fonction affine, droite, lire et tracer sur un graphique - Seconde. 3 KB Chap 07 - Ex 6B - Fiche Fonctions affines par morceaux - CORRIGE Chap 06 - Ex 6B - Fiche Fonctions affine 258. 0 KB

Exercice Fonction Affine Seconde Nature

Si a < 0 a < 0, la fonction f f est décroissante sur R \mathbb{R}. Preuve: On considère deux nombres x 1 x_1 et x 2 x_2 tels que: x 1 < x 2 x_1 < x_2. Si a > 0 a > 0, on a: a x 1 < a x 2 ax_1 < ax_2, donc: a x 1 + b < a x 2 + b ax_1 +b < ax_2 +b D'où: f ( x 1) < f ( x 2) f(x_1) < f(x_2) et donc f f est croissante sur R \mathbb{R}. Fonctions affines - Exercices 2nde - Kwyk. Si a < 0 a < 0, on a: a x 1 > a x 2 ax_1 > ax_2, et donc: a x 1 + b > a x 2 + b ax_1 +b > ax_2 +b D'où: f ( x 1) > f ( x 2) f(x_1) > f(x_2) et donc f f est décroissante sur R \mathbb{R}. Remarque: Si a = 0 a = 0 alors la fonction f f est constante sur R \mathbb{R}. Tableaux de variation: a > 0 a > 0 a < 0 a < 0 La fonction définie par f ( x) = 3 x + 6 f(x) = 3x +6 est croissante sur R \mathbb{R} car: a = 3 > 0 a = 3 > 0 La fonction définie par g ( x) = − x + 4 g(x) = -x +4 est décroissante sur R \mathbb{R} car: a = − 1 < 0 a = -1 < 0 III. Signe d'une fonction affine 1. Résolution de l'équation f ( x) = 0 f(x) = 0 On doit résoudre a x + b = 0 ax + b = 0 (avec a a non nul), On a: a x = − b ax = -b Donc: x = − b a x = \frac{-b}{a}.

Elles admettent donc chacune une expression du type $mx+p$. 2. $p$ est l'ordonnée à l'origine. Or, pour la droite $d_1$, il est clair que $p$ est strictement négatif. Donc la seule valeur convenable est $p=-2, 4$. 2. D'après ce qui précède, nous savons donc que $f(x)=mx-2, 4$. Comme $f$ est strictement croissante, on en déduit que le coefficient directeur $m$ est strictement positif. Donc, par élimination: ou bien $m=2, 1$, ou bien $m=2$. Pour choisir, utilisons le fait que $f(1, 2)=0$. Supposons que $m=2, 1$. On a alors: $f(x)=2, 1x-2, 4$. Et par là: $f(1, 2)=2, 1×1, 2-2, 4=0, 12$. Comme on ne trouve pas 0, la valeur de $m$ envisagée est exclue. Donc, par élimination, il ne reste plus que $m=2$. Pour se rassurer, nous pouvons vérifier que, si $m=2$, alors $f(1, 2)=0$. Dans ce cas, on a alors: $f(x)=2x-2, 4$. Exercice fonction affine seconde nature. Et par là: $f(1, 2)=2×1, 2-2, 4=0$. C'est parfait! 3. On pose $g(x)=mx+p$. Comme $d_2$ est parallèle à l'axe des abscisses, on a: $m=0$. Et par là, on obtient: $g(x)=p$. Or, comme $d_1$ et $d_2$ se coupent au point d'abscisse $2, 45$, on a donc: $g(2, 45)=f(2, 45)$.