Exercice 4 Soit $f$ la fonction définie sur $]-\infty;6[\cup]6;+\infty[$ par $f(x) = \dfrac{1}{2x-12}$. Reproduire et compléter le tableau de valeur suivant: $$\begin{array}{|c|c|c|c|c|c|c|c|} \hline x&0&4&5&5, 5&6, 5&7&8 \\ f(x) & & & & & & & \\ \end{array}$$ Tracer la courbe représentative de $f$ dans un repère. Déterminer graphiquement puis retrouver par le calcul l'antécédent de $-\dfrac{1}{3}$. Correction Exercice 4 f(x) &-\dfrac{1}{12} &-\dfrac{1}{4} &-\dfrac{1}{2} &-1 &1 &\dfrac{1}{2} &\dfrac{1}{4} \\ Graphiquement, un antécédent de $-\dfrac{1}{3}$ semble être $4, 5$. Chapitre 12 : Fonction inverse et fonction homographique - Site de profmathmerlin !. On cherche la valeur de $x$ telle que: $\begin{align*} f(x) = -\dfrac{1}{3} & \Leftrightarrow \dfrac{1}{2x-12}= -\dfrac{1}{3} \\\\ & \Leftrightarrow 1 \times (-3) = 2x – 12 \text{ et} x \neq 6 \\\\ & \Leftrightarrow -3 + 12 = 2x \text{ et} x \neq 6 \\\\ & \Leftrightarrow x = \dfrac{9}{2} L'antécédent de $-\dfrac{1}{3}$ est donc $\dfrac{9}{2}$. Exercice 5 Résoudre les inéquations suivantes: $\dfrac{2x – 5}{x – 6} \ge 0$ $\dfrac{5x-2}{-3x+1} < 0$ $\dfrac{3x}{4x+9} > 0$ $\dfrac{2x – 10}{11x+2} \le 0$ Correction Exercice 5 Dans chacun des cas, nous allons étudier le signe du numérateur et du dénominateur puis construire le tableau de signes associé.

Cours Fonction Inverse Et Homographique Un

Démontrer que ces fonctions sont des fonctions homographiques. Résoudre l'équation $f(x)=g(x)$. Correction Exercice 3 $f$ est définie quand $x – 5\neq 0$. Par conséquent $\mathscr{D}_f =]-\infty;5[\cup]5;+\infty[$. $g$ est définie quand $x – 7\neq 0$. Par conséquent $\mathscr{D}_g =]-\infty;7[\cup]7;+\infty[$. $f(x) = \dfrac{2(x – 5) + 3}{x – 5} = \dfrac{2x – 10 + 3}{x – 5} = \dfrac{2x – 7}{x -5}$ On a ainsi $a = 2$, $b=-7$, $c=1$ et $d=-5$. On a bien $c \neq 0$ et $ad-bc = -10 + 7 = -3\neq 0$. Par conséquent, $f$ est bien une fonction homographique. Fonction homographique - Seconde - Cours. $g(x) = \dfrac{3(x – 7) – x}{x – 7} = \dfrac{3x – 21 – x}{x -7} = \dfrac{2x – 21}{x – 7}$ On a ainsi $a = 2$, $b=-21$, $c=1$ et $d=-7$. On a bien $c \neq 0$ et $ad-bc = -14 + 21 = 7 \neq 0$ Par conséquent $g$ est bien une fonction homographique. $\begin{align*} f(x) = g(x) & \Leftrightarrow \dfrac{2x-7}{x-5} = \dfrac{x – 21}{x – 7} \\\\ & \Leftrightarrow \dfrac{2x – 7}{x – 5} – \dfrac{2x – 21}{x -7} = 0\\\\ & \Leftrightarrow \dfrac{(2x – 7)(x – 7)}{(x-5)(x-7)} – \dfrac{(2x – 21)(x – 5)}{(x-7)(x-5)} = 0\\\\ & \Leftrightarrow \dfrac{2x^2-14x-7x+49}{(x-5)(x-7)} – \dfrac{2x^2-10x-21x+105}{(x-7)(x-5)} = 0\\\\ & \Leftrightarrow \dfrac{10x-56}{(x-5)(x-7)} = 0 \\\\ & \Leftrightarrow 10x – 56 = 0 \text{ et} x \neq 5 \text{ et} x \neq 7 \\\\ & \Leftrightarrow x = 5, 6 \end{align*}$ La solution de l'équation est donc $5, 6$.

Exercice 1 Répondre par vrai ou faux aux affirmations suivantes: Une fonction homographique est toujours définie sur $\R^{*} =]-\infty;0[\cup]0;+\infty[$. $\quad$ Une fonction homographique peut-être définie sur $\R$ privé de $1$ et $3$. La fonction $x \mapsto \dfrac{2-x}{10-x}$ est une fonction homographique. La fonction $x \mapsto \dfrac{x^2+1}{x+4}$ est une fonction homographique. Une équation quotient $\dfrac{ax+b}{cx+d}=0$ admet pour solution $ -\dfrac{b}{a}$ et $-\dfrac{d}{c}$. Correction Exercice 1 Faux. Par exemple $f: x \mapsto \dfrac{x – 3}{x + 1}$ est définie sur $]-\infty;-1[\cup]-1;+\infty[$. Faux. La seule valeur pour laquelle une fonction homographique n'est pas définie est celle qui annule le dénominateur. Celui, étant un polynôme du premier degré, ne s'annule qu'une seule fois. Vrai. Cours fonction inverse et homographique un. En effet en utilisant la notation $\dfrac{ax+b}{cx+d}$ on a: $a=-1$, $b=2$, $c=-1$ et $d=10$. Donc $ad-bc = -10 -(-2) = -8 \neq 0$ et $c\neq 0$. Faux. Le numérateur n'est pas de la forme $ax+b$ mais $ax^2+b$.