cas n°1 Si q = 1 q = 1, q n = 1 q^n = 1 quel que soit n n. Alors: lim ⁡ q n = 1 n → + ∞ ⇔ lim ⁡ v 0 × q n v 0 n → + ∞ ⇔ lim ⁡ v n = v 0 n → + ∞ \large \lim\limits {\stackrel{n \to +\infty}{q^n=1}} \Leftrightarrow \lim\limits {\stackrel{n \to +\infty}{v 0\times q^nv 0}} \Leftrightarrow \lim\limits {\stackrel{n \to +\infty}{v n=v_0}} cas n°2 Si q < − 1 q < -1, la suite est alternée, c'est-à-dire qu'elle change de signe entre deux termes consécutifs. Lorsque n tend vers l'infini, la valeur absolue |qn| tend vers l'infini. Prenons le cas où v 0 v 0 est positif: pour n positif, v 0 × q n v 0 \times q^n tend vers + ∞ +\infty et pour n n négatif, v 0 × q n v_0 \times q^n tend vers − ∞ -\infty. Démonstration des limites d'une suite géométrique | SchoolMouv. La limite de ( v n) (v n) quand n n tend vers l'infini n'existe pas. De même pour v 0 v 0 négatif. Remarque: Si q = − 1 q = -1. La suite est alternée car soit n n est pair et q n = 1 q^n = 1, soit n n est impair et q n = − 1 q^n=-1. La limite de ( v n) (v n) quand n n tend vers plus l'infini n'existe pas.

Limites Suite Géométrique Le

Théorème des gendarmes: Ce théorème est également valable si l'encadrement n'est vrai qu'à partir d'un certain rang. * Si pour tout n: vn un wn et si (vn) et (wn) convergent vers alors: ( u n) converge vers Beaucoup d'élèves commettent l'erreur suivante: Contre exemple: et or: lim (-n2) = Par contre, et ce qui est souvent le cas dans des exercices de BAC: Si on sait de plus que la suite est à termes positifs alors: pour tout n: 0 u n w n et lim o=l im wn=0 « 0 » symbolisant ici le terme général de la suite constante nulle. Donc d'après le Théorème des gendarmes: lim u n = 0 Théorème des gendarmes avec valeur absolue * Si pour tout n: et si lim vn = 0 alors: (un) converge vers Démonstration: * Si pour tout n: Alors: - v n < u n - < v n Or: lim (- v n) = lim v n = 0 Donc d'après le théorème des gendarmes: lim ( u n -) = 0 D'où: lim un = 3/ Limite infinie d'une suite: définition La suite (un) admet pour limite si: Tout intervalle]a; [ contient à partir d'un certain rang. Tout intervalle]; a[ contient tous les termes de la suite 4/ Théorèmes de divergence Théorèmes de divergence monotone * Si (un) est croissante et non majorée alors lim un = * Si (un) est décroissante et non minorée alors lim un = Théorèmes de comparaison * Si pour tout n: u n > v n et lim v n = alors: lim u n = * Si pour tout n: u n w n et lim w n = alors: lim u n = Remarque: La démonstration de chacune de ces propriétés peut faire l'objet d'un R. O. Les suites - Mathématiques - BTS CG. C, c'est pourquoi nous y reviendrons dans la partie exercice.

Limites Suite Géométrique Pour

♦ Démonstrations du cours: Si $q\gt 1$ Si $0\lt q\lt 1$ Si $-1\lt q\lt 0$ Traceurs de suite pour trouver la limite graphiquement Savoir utiliser sa calculatrice pour conjecturer la limite d'une suite ♦ Calculer avec une calculatrice CASIO graph 35+ les premiers termes d'une suite pour conjecturer la limite: ♦ Calculer avec une calculatrice TI-82 ou TI-83, les premiers termes d'une suite pour conjecturer la limite:

solution L'arrondi au dixième de 2 2 est 0, 7 donc 0 ⩽ 2 2 1 donc lim n → + ∞ u n = 0. On a pour tout n ∈ ℕ, v n = 1 2 n et 0 ⩽ 1 2 1 donc lim n → + ∞ v n = 0. Pour tout n ∈ ℕ, w n = 1 3 n − 2 n 3 n = 1 3 n − 2 3 n. De plus, 0 ⩽ 1 3 1 et 0 ⩽ 2 3 1 donc lim n → + ∞ ( 1 3) n = lim n → + ∞ ( 2 3) n = 0, d'où par différence lim n → + ∞ w n = 0. 2 Déterminer la limite d'une somme de termes consécutifs Soit n un entier naturel non nul. Limites suite géométrique pour. Déterminer la limite des sommes suivantes: S n = 1 + 0, 25 + 0, 25 2 + … + 0, 25 n T n = 1 + 1 2 + 1 2 2 + … + 1 2 n D n = 0, 1 + 0, 01 + … + 0, 1 n Pour S n, appliquez directement le théorème; pour T n, considérez une suite géométrique de raison 1 2; pour D n, remarquez qu'il manque le premier terme pour pouvoir appliquer directement le théorème. solution On a lim n → + ∞ ( 1 + 0, 25 + 0, 25 2 + … + 0, 25 n) = 1 1 − 0, 25 donc lim n → + ∞ S n = 4 3. Pour tout n ∈ ℕ, T n = 1 + 1 2 + ( 1 2) 2 + … + ( 1 2) n donc lim n → + ∞ T n = 1 1 − 1 2 soit lim n → + ∞ T n = 2.