On exclut $0$ pour que la canette ne soit pas réduite à un point. La hauteur $h$ de la canette est égale à cinq fois celle de son rayon. Par conséquent $h=5r$. Ainsi $V(r)=\pi r^2\times 5r=5\pi r^3$. $25$ cL $=250$ cm$^3$. On veut donc résoudre l'équation: $\begin{align*} V(r)=250 &\ssi 5\pi r^3=250 \\ &\ssi r^3=\dfrac{250}{5\pi} \\ &\ssi r=\sqrt[3]{\dfrac{250}{5\pi}}\end{align*}$ Par conséquent $r\approx 2, 5$ cm. Exercice sur les fonctions seconde kartable. Exercice 4 Une approximation de la vitesse $v$, exprimée en km/h, d'un satellite tournant autour de la terre selon une trajectoire circulaire est donnée par la formule suivante: $$v=\dfrac{356 \times 6~371}{\sqrt{6~371+h}}$$ où $h$ est l'altitude, exprimée en km, du satellite. On suppose que la vitesse du satellite est de $9~553$ km/h. À quelle altitude, arrondie au km, se situe-t-il? Les satellites géostationnaires sont situés à une altitude de $35~786$ km. Quelle est alors la vitesse, arrondi au km/h, de ces satellites? Correction Exercice 4 On a donc: $\begin{align*} 9~553=\dfrac{356 \times 6~371}{\sqrt{6~371+h}} &\ssi 9~553\sqrt{6~371+h}=356\times 6~371 \\ &\ssi \sqrt{6~371+h}=\dfrac{356\times 6~371}{9~553} \end{align*}$ Ainsi $6~371+h=\left(\dfrac{356\times 6~371}{9~553} \right)^2$ Soit $h=\left(\dfrac{356\times 6~371}{9~553} \right)^2-6~371$.

Exercice Sur Les Fonctions Seconde Kartable

2 de Ce quiz comporte 6 questions facile 2 de - Généralités sur les fonctions (1) 1 Soit une fonction f f définie sur l'intervalle [ − 3, 6] [-3~, ~6] dont le tableau de variation est: f ( 0) < 0. Exercice sur les fonctions seconde le. f(0) < 0. 2 de - Généralités sur les fonctions (1) 1 2 de - Généralités sur les fonctions (1) 2 Soit une fonction f f définie sur l'intervalle [ − 3, 3] [-3~, ~3] dont le tableau de variation est: La fonction f f est décroissante sur l'intervalle [ − 2; − 1]. [-2~;~-1].

Ici, nous avons vu que \(f(-x) = x^2 - 1. \) Par ailleurs, \(-f(x) = -x^2 + 1. \) La fonction \(f\) ne peut en aucun cas être impaire.