mais on veut un résultat en fonction de V n et pas de U n Si V n =1/(U n -1) U n -1 = 1/V n U n = 1/V n +1 Si on remplace, ça donne: Posté par Rweisha re: Démontrer qu'une suite est arithmétique et trouver sa raiso 16-09-14 à 19:48 Okay d'accord c'était pour le (Vn/3)*((1/Vn)+3) que je me suis trompé. j'ai tout compris seulement comme moi et les fraction cela fais 2 xD. Entre cette étape: (Vn/3)*((1/Vn)+3) et le résultat, le développement ce passe comment? Merci très compréhensible sinon. Posté par Glapion re: Démontrer qu'une suite est arithmétique et trouver sa raiso 16-09-14 à 19:59 on apprend à multiplier des fractions en 6 ième, non? Posté par Rweisha re: Démontrer qu'une suite est arithmétique et trouver sa raiso 16-09-14 à 20:03 Totalement ^^ Merci bien pour tes réponse rapide Pour des autres problèmes je doit ouvrir un autres topic ou je peu continué sur celui-ci? C'est en rapport avec les suites et le raisonnement par récurrence ^^ Et ouai la terminal S difficile ^^ Merci Ce topic Fiches de maths Suites en terminale 8 fiches de mathématiques sur " Suites " en terminale disponibles.

Chapitre 1: Suites Numériques - Kiffelesmaths

T dernière édition par Hind Bonjour, je suis bloqué à mon exercice. Voici l'énoncé, Soit (Un) la suite définie par U0=4 et Un+1 = 4Un-9/Un-2 et soit (Vn) la suite définie par Vn= 1/Un-3. Je dois calculer U1, U2 et V0, V1 et V2. Je dois démontrer que (Vn) est une suite arithmétique dont on précisera la raison. en déduire, Vn en fonction de n puis Un en fonction de n. Pour la question 1), j'ai réussi. Pour la 2), j'ai commencé et j'ai fait Vn+1 - Vn. Mais je suis bloqué. J'aimerai un peu de votre aide. Merci.

DÉMontrer Qu'Une Suite Est ArithmÉTique : Exercice De MathÉMatiques De PremiÈRe - 610043

– Si r < 0 alors la suite ( u n) est décroissante. Démonstration: u n+1 – u n = u n + r – u n = r – Si r > 0 alors u n+1 – u n > 0 et la suite ( u n) est croissante. – Si r < 0 alors u n+1 – u n < 0 et la suite ( u n) est décroissante. Exemples: u n définie par u n = 12 + 7n est suite arithmétique croissante car la raison est positive et égale à 7. v n définie par v n = 7 – 5n est une suite arithmétique décroissante car la raison est négative et égale à -5. Représentation graphique: On appelle la représentation graphique d' une suite ( u n), l' ensemble des points du plan de coordonnées ( n; u n) Ci-dessous, on a représenté une suite arithmétique de raison -2 et le premier terme u 0 est égal à 5 ( u n = 5 – 2n): On a: u 0 = 5; u 1 = 3; u 2 = 1; u 3 = -1; u 4 = -3; u 5 = -5; u 6 = -7; … La représentation graphique de la suite ( u n) est l' ensemble des points alignés en rouge pour les valeurs de n allant de 0 à 6. Aussi, lorsque la représentation graphique d' une suite est constituée de points alignés, cette suite est dite arithmétique.

Démontrer Qu'Une Suite Est Arithmétique | 2 Exemples Corrigés | Pigerlesmaths - Youtube

u 1 0 0 = 5 + 2 × 1 0 0 = 2 0 5 u_{100}=5+2\times 100=205 Réciproquement, si a a et b b sont deux nombres réels et si la suite ( u n) \left(u_{n}\right) est définie par u n = a × n + b u_{n}=a\times n+b alors cette suite est une suite arithmétique de raison r = a r=a et de premier terme u 0 = b u_{0}=b. Démonstration u n + 1 − u n = a ( n + 1) + b − ( a n + b) u_{n+1} - u_{n}=a\left(n+1\right)+b - \left(an+b\right) = a n + a + b − a n − b = a =an+a+b - an - b=a et u 0 = a × 0 + b = b u_{0}=a\times 0+b=b La représentation graphique d'une suite arithmétique est formée de points alignés. Cela se déduit immédiatement du fait que, pour tout n ∈ N n \in \mathbb{N}, u n = u 0 + n × r u_{n}=u_{0}+n\times r donc les points représentant la suite sont sur la droite d'équation y = r x + u 0 y=rx+u_{0} Suite arithmétique de premier terme u 0 = 1 u_{0}=1 et de raison r = 1 2 r=\frac{1}{2} Théorème Soit ( u n) \left(u_{n}\right) une suite arithmétique de raison r r: si r > 0 r > 0 alors ( u n) \left(u_{n}\right) est strictement croissante si r = 0 r=0 alors ( u n) \left(u_{n}\right) est constante si r < 0 r < 0 alors ( u n) \left(u_{n}\right) est strictement décroissante.

Suite Arithmétique - Homeomath

Il est temps de vous montrer comment prouver qu'une suite est arithmétique à partir de sa définition. L'objectif de cet exercice est de déterminer le signe de la dérivée suivante, définie sur R - {-1} par: f'(x) = 1 - x ² (1 + x)³ Rappeler le domaine de dérivabilité de f On a un dénominateur à la dérivée de la fonction f. Il va donc falloir restreindre l'étude du signe de la dérivée à son domaine de dérivabilité. On sait que lorsque l'on a une somme, un produit, une composée ou un quotient (dont le dénominateur ne s'annule pas) de fonctions usuelles, le domaine de dérivabilité est très souvent le même que le domaine de définition. Or, la fonction dérivée f' est définie sur R - {-1} (l' ensemble des réels privé de la valeur -1), on étudie donc son signe sur ce domaine. Calculer u n+1 - u n Pour tout entier n appartenant à l'ensemble des naturels, on calcule d'abord la différence u n+1 - u n. Soit n un entier naturel. Calculons: u n+1 - u n = [( n + 3)² - ( n + 1)²] - [( n + 2)² - n ²] u n+1 - u n = [ n ² + 6 n + 9 - n ² - 2 n - 1] - [ n ² + 4 n + 4 - n ²] u n+1 - u n = [4 n + 8] - [4 n + 4] u n+1 - u n = 4 n + 8 - 4 n - 4 u n+1 - u n = 4 Conclure que u n est arithmétique Maintenant que l'on a fait le calcul u n+1 - u n et que l'on a trouvé un nombre naturel, on peut conclure quant à la nature de la suite u n.

Cet article a pour but d'expliquer une méthode systématique pour résoudre les suites arithmético-géométriques. Vous voulez en savoir plus? C'est parti! Cette notion est abordable en fin de lycée ou en début de prépa (notamment pour la démonstration). Prérequis Les suites arithmétiques Les suites géométriques Définition Une suite arithmético-géométrique est une suite récurrente de la forme: \forall n \in \N, \ u_{n+1} = a\times u_n + b Avec: a ≠ 1: Dans le cas contraire c'est une suite arithmétique b ≠ 0: Dans le cas contraire, c'est une suite géométrique Résolution et formule Voici comment résoudre les suites arithmético-géométriques. On recherche un point fixe. C'est à dire qu'on fait l'hypothèse que \forall n \in \N, \ u_n = l Donc on va résoudre l'équation Ce qui nous donne: \begin{array}{l} l = a\times l +b\\ \Leftrightarrow l - a\times l = b \\ \Leftrightarrow l \times (1-a) = b \\ \Leftrightarrow l = \dfrac{b}{1-a} \end{array} On va ensuite poser ce qu'on appelle une suite auxilaire.